Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
medRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562841

RESUMEN

Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (rg=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (rg=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no rg between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.

2.
J Clin Endocrinol Metab ; 109(4): 968-977, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967238

RESUMEN

CONTEXT: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, with disease loci identified from genome-wide association studies (GWAS) having largely unknown relationships to disease pathogenesis. OBJECTIVE: This work aimed to group PCOS GWAS loci into genetic clusters associated with disease pathophysiology. METHODS: Cluster analysis was performed for 60 PCOS-associated genetic variants and 49 traits using GWAS summary statistics. Cluster-specific PCOS partitioned polygenic scores (pPS) were generated and tested for association with clinical phenotypes in the Mass General Brigham Biobank (MGBB, N = 62 252). Associations with clinical outcomes (type 2 diabetes [T2D], coronary artery disease [CAD], and female reproductive traits) were assessed using both GWAS-based pPS (DIAMANTE, N = 898,130, CARDIOGRAM/UKBB, N = 547 261) and individual-level pPS in MGBB. RESULTS: Four PCOS genetic clusters were identified with top loci indicated as following: (i) cluster 1/obesity/insulin resistance (FTO); (ii) cluster 2/hormonal/menstrual cycle changes (FSHB); (iii) cluster 3/blood markers/inflammation (ATXN2/SH2B3); (iv) cluster 4/metabolic changes (MAF, SLC38A11). Cluster pPS were associated with distinct clinical traits: Cluster 1 with increased body mass index (P = 6.6 × 10-29); cluster 2 with increased age of menarche (P = 1.5 × 10-4); cluster 3 with multiple decreased blood markers, including mean platelet volume (P = 3.1 ×10-5); and cluster 4 with increased alkaline phosphatase (P = .007). PCOS genetic clusters GWAS-pPSs were also associated with disease outcomes: cluster 1 pPS with increased T2D (odds ratio [OR] 1.07; P = 7.3 × 10-50), with replication in MGBB all participants (OR 1.09, P = 2.7 × 10-7) and females only (OR 1.11, 4.8 × 10-5). CONCLUSION: Distinct genetic backgrounds in individuals with PCOS may underlie clinical heterogeneity and disease outcomes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Mitoguazona/análogos & derivados , Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Sitios Genéticos , Análisis por Conglomerados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
3.
Hum Genet ; 142(11): 1611-1619, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805574

RESUMEN

Precision medicine requires precise genetic variant interpretation, yet many disease-associated genes have unresolved variants of unknown significance (VUS). We analyzed variants in a well-studied gene, FGFR1, a common cause of Idiopathic Hypogonadotropic Hypogonadism (IHH) and examined whether regional genetic enrichment of missense variants could improve variant classification. FGFR1 rare sequence variants (RSVs) were examined in a large cohort to (i) define regional genetic enrichment, (ii) determine pathogenicity based on the American College of Medical Genetics/Association for Molecular Pathology (ACMG/AMP) variant classification framework, and (iii) characterize the phenotype of FGFR1 variant carriers by variant classification. A total of 143 FGFR1 RSVs were identified in 175 IHH probands (n = 95 missense, n = 48 protein-truncating variants). FGFR1 missense RSVs showed regional enrichment across biologically well-defined domains: D1, D2, D3, and TK domains and linker regions (D2-D3, TM-TK). Using these defined regions of enrichment to augment the ACMG/AMP classification reclassifies 37% (20/54) of FGFR1 missense VUS as pathogenic or likely pathogenic (PLP). Non-proband carriers of FGFR1 missense VUS variants that were reclassified as PLP were more likely to express IHH or IHH-associated phenotypes [anosmia or delayed puberty] than non-proband carriers of FGFR1 missense variants that remained as VUS (76.9% vs 34.7%, p = 0.035). Using the largest cohort of FGFR1 variant carriers, we show that integration of regional genetic enrichment as moderate evidence for pathogenicity improves the classification of VUS and that reclassified variants correlated with phenotypic expressivity. The addition of regional genetic enrichment to the ACMG/AMP guidelines may improve clinical variant interpretation.


Asunto(s)
Hipogonadismo , Humanos , Virulencia , Hipogonadismo/genética , Fenotipo , Genética Humana , Variación Genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
4.
Front Endocrinol (Lausanne) ; 14: 1203542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600690

RESUMEN

Idiopathic hypogonadotropic hypogonadism (IHH) is characterized by the absence of pubertal development and subsequent impaired fertility often due to gonadotropin-releasing hormone (GnRH) deficits. Exome sequencing of two independent cohorts of IHH patients identified 12 rare missense variants in POU6F2 in 15 patients. POU6F2 encodes two distinct isoforms. In the adult mouse, expression of both isoform1 and isoform2 was detected in the brain, pituitary, and gonads. However, only isoform1 was detected in mouse primary GnRH cells and three immortalized GnRH cell lines, two mouse and one human. To date, the function of isoform2 has been verified as a transcription factor, while the function of isoform1 has been unknown. In the present report, bioinformatics and cell assays on a human-derived GnRH cell line reveal a novel function for isoform1, demonstrating it can act as a transcriptional regulator, decreasing GNRH1 expression. In addition, the impact of the two most prevalent POU6F2 variants, identified in five IHH patients, that were located at/or close to the DNA-binding domain was examined. Notably, one of these mutations prevented the repression of GnRH transcripts by isoform1. Normally, GnRH transcription increases as GnRH cells mature as they near migrate into the brain. Augmentation earlier during development can disrupt normal GnRH cell migration, consistent with some POU6F2 variants contributing to the IHH pathogenesis.


Asunto(s)
Encéfalo , Hipogonadismo , Mutación Missense , Factores del Dominio POU , Animales , Humanos , Ratones , Hormona Liberadora de Gonadotropina/genética , Factores del Dominio POU/genética , Hipogonadismo/genética
7.
JCI Insight ; 8(3)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36602867

RESUMEN

Pathogenic SRY-box transcription factor 2 (SOX2) variants typically cause severe ocular defects within a SOX2 disorder spectrum that includes hypogonadotropic hypogonadism. We examined exome-sequencing data from a large, well-phenotyped cohort of patients with idiopathic hypogonadotropic hypogonadism (IHH) for pathogenic SOX2 variants to investigate the underlying pathogenic SOX2 spectrum and its associated phenotypes. We identified 8 IHH individuals harboring heterozygous pathogenic SOX2 variants with variable ocular phenotypes. These variant proteins were tested in vitro to determine whether a causal relationship between IHH and SOX2 exists. We found that Sox2 was highly expressed in the hypothalamus of adult mice and colocalized with kisspeptin 1 (KISS1) expression in the anteroventral periventricular nucleus of adult female mice. In vitro, shRNA suppression of mouse SOX2 protein in Kiss-expressing cell lines increased the levels of human kisspeptin luciferase (hKiss-luc) transcription, while SOX2 overexpression repressed hKiss-luc transcription. Further, 4 of the identified SOX2 variants prevented this SOX2-mediated repression of hKiss-luc. Together, these data suggest that pathogenic SOX2 variants contribute to both anosmic and normosmic forms of IHH, attesting to hypothalamic defects in the SOX2 disorder spectrum. Our study describes potentially novel mechanisms contributing to SOX2-related disease and highlights the necessity of SOX2 screening in IHH genetic evaluation irrespective of associated ocular defects.


Asunto(s)
Hipogonadismo , Adulto , Animales , Femenino , Humanos , Ratones , Heterocigoto , Hipogonadismo/genética , Mutación , Fenotipo , Factores de Transcripción SOXB1/genética
8.
Hum Mol Genet ; 32(10): 1722-1729, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36694982

RESUMEN

Isolated hypogonadotropic hypogonadism (IHH) is a rare disease with hypogonadism and infertility caused by the defects in embryonic migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons, hypothalamic GnRH secretion or GnRH signal transduction. PROKR2 gene, encoding a G-protein coupled receptor PROKR2, is one of the most frequently mutated genes identified in IHH patients. However, the functional consequences of several PROKR2 mutants remain elusive. In this study, we systematically analyzed the Gαq, Gαs and ERK1/2 signaling of 23 IHH-associated PROKR2 mutations which are yet to be functionally characterized. We demonstrate that blockage of Gαq, instead of MAPK/ERK pathway, inhibited PROK2-induced migration of PROKR2-expressing cells, implying that PROKR2-related IHH results primarily due to Gαq signaling pathway disruption. Combined with previous reports, we categorized a total of 63 IHH-associated PROKR2 mutations into four distinct groups according Gαq pathway functionality: (i) neutral (N, >80% activity); (ii) low pathogenicity (L, 50-80% activity); (iii) medium pathogenicity (M, 20-50% activity) and (iv) high pathogenicity (H, <20% activity). We further compared the cell-based functional results with in silico mutational prediction programs. Our results indicated that while Sorting Intolerant from Tolerant predictions were accurate for transmembrane region mutations, mutations localized in the intracellular and extracellular domains were accurately predicted by the Combined Annotation Dependent Depletion prediction tool. Our results thus provide a functional database that can be used to guide diagnosis and appropriate genetic counseling in IHH patients with PROKR2 mutations.


Asunto(s)
Hipogonadismo , Humanos , Hipogonadismo/genética , Mutación , Hormona Liberadora de Gonadotropina/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Gonadotropinas , Receptores de Péptidos/genética
9.
J Clin Endocrinol Metab ; 108(4): 897-908, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36268624

RESUMEN

CONTEXT: Isolated hypogonadotropic hypogonadism (IHH) is phenotypically and genetically heterogeneous. OBJECTIVE: This work aimed to determine the correlation between genotypic severity with pubertal and neuroendocrine phenotypes in IHH men. METHODS: A retrospective study was conducted (1980-2020) examining olfaction (Kallmann syndrome [KS] vs normosmic IHH [nHH]), baseline testicular volume (absent vs partial puberty), neuroendocrine profiling (pulsatile vs apulsatile luteinizing hormone [LH] secretion), and genetic variants in 62 IHH-associated genes through exome sequencing (ES). RESULTS: In total, 242 men (KS: n = 131 [54%], nHH: n = 111 [46%]) were included. Men with absent puberty had significantly lower gonadotropin levels (P < .001) and were more likely to have undetectable LH (P < .001). Logistic regression showed partial puberty as a statistically significant predictor of pulsatile LH secretion (R2 = 0.71, P < .001, OR: 10.8; 95% CI, 3.6-38.6). Serum LH of 2.10 IU/L had a 95% true positive rate for predicting LH pulsatility. Genetic analyses in 204 of 242 IHH men with ES data available revealed 36 of 204 (18%) men carried protein-truncating variants (PTVs) in 12 IHH genes. Men with absent puberty and apulsatile LH were enriched for oligogenic PTVs (P < .001), with variants in ANOS1 being the predominant PTV in this genotype-phenotype association. Men with absent puberty were enriched for ANOS1 PTVs compared to partial puberty counterparts (P = .002). PTVs in other IHH genes imparted more variable reproductive phenotypic severity. CONCLUSION: Partial puberty and LH greater than or equal to 2.10 IU/L are proxies for pulsatile LH secretion. ANOS1 PTVs confer severe reproductive phenotypes. Variable phenotypic severity in the face of severe genetic variants in other IHH genes point to significant neuroendocrine plasticity of the HPG axis in IHH men.


Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Humanos , Estudios Retrospectivos , Hipogonadismo/genética , Síndrome de Kallmann/genética , Genotipo , Fenotipo
10.
Front Endocrinol (Lausanne) ; 13: 1054447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407308

RESUMEN

Congenital hypogonadotropic hypogonadism (HH) is a heterogeneous genetic disorder characterized by disrupted puberty and infertility. In most cases, HH is abiding yet 10-15% undergo reversal. Men with HH and absent and partial puberty (i.e., testicular volume <4mL and >4mL respectively) have been well-studied, but the rare fertile eunuch (FE) variant remains poorly characterized. This natural history study of 240 men with HH delineates the clinical presentation, neuroendocrine profile, rate of reversal and genetics of the FE variant. We compared three HH groups: FE (n=38), absent puberty (n=139), and partial puberty (n=63). The FE group had no history of micropenis and 2/38 (5%) had cryptorchidism (p<0.0001 vs. other groups). The FE group exhibited higher rates of detectable gonadotropins, higher mean LH/FSH levels, and higher serum inhibin B levels (all p<0.0001). Neuroendocrine profiling showed pulsatile LH secretion in 30/38 (79%) of FE men (p<0.0001) and 16/36 (44%) FE men underwent spontaneous reversal of HH (p<0.001). The FE group was enriched for protein-truncating variants (PTVs) in GNRHR and FGFR1 and 4/30 (13%) exhibited oligogenic PTVs. Findings suggest men with the FE variant exhibit the mildest neuroendocrine defects of HH men and the FE sub-type represents the first identified phenotypic predictor for reversible HH.


Asunto(s)
Eunuquismo , Hipogonadismo , Humanos , Masculino , Gonadotropinas , Sistemas Neurosecretores
11.
Genet Med ; 24(12): 2501-2515, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178483

RESUMEN

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Asunto(s)
Hipogonadismo , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Hipogonadismo/genética , Hormona Liberadora de Gonadotropina/genética , Proteínas Represoras , Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de GTPasa/genética
12.
J Clin Endocrinol Metab ; 107(8): 2228-2242, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35574646

RESUMEN

CONTEXT: The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE: To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS: Exome sequencing (ES) data in IHH probands (n = 1394) (Kallmann syndrome [IHH with anosmia; KS], n = 706; normosmic IHH [nIHH], n = 688) and family members (n = 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION: CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.


Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Variaciones en el Número de Copia de ADN , Humanos , Hipogonadismo/epidemiología , Hipogonadismo/genética , Síndrome de Kallmann/genética , Mutación , Fenotipo , Prevalencia
13.
J Clin Endocrinol Metab ; 107(8): e3515-e3525, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35323937

RESUMEN

CONTEXT: Hyperprolactinemia suppresses gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) pulses. The hypothalamic neuropeptide kisspeptin potently stimulates the secretion of GnRH. The effects of exogenous kisspeptin administration on GnRH pulse generation in the setting of hyperprolactinemia have not previously been explored. OBJECTIVE: This work aimed to examine the effects of kisspeptin on GnRH secretion, as reflected by LH secretion, in women with hyperprolactinemia. METHODS: Women with hyperprolactinemia (n = 11) participated in two 12-hour visits. Before study visits, participants underwent washout of dopamine agonist and/or combined oral contraceptive. Frequent blood sampling was performed (1 sample was collected every 10 minutes). Visit 1 involved no intervention, to examine baseline LH pulsatility. During visit 2, kisspeptin 112-121 (0.24 nmol/kg) was administered every 1 hour, for 10 hours. At hour 11, one intravenous bolus of GnRH (75 ng/kg) was administered. RESULTS: Repetitive intravenous bolus kisspeptin administration increased the total number of LH pulses in the setting of hyperprolactinemia. The interpulse interval declined during the same time frames. LH pulse amplitude did not change, but the mean LH rose. In 6 participants with progesterone levels suggestive of an anovulatory state, mean LH and estradiol levels increased significantly at visit 2. In the entire cohort, follicle-stimulating hormone and prolactin levels did not change significantly across the 2 visits. A total of 73% of subjects exhibited an LH pulse within 30 minutes of first kisspeptin dose. CONCLUSION: Kisspeptin is capable of stimulating hypothalamic GnRH-induced LH pulses in the setting of hyperprolactinemia.


Asunto(s)
Hiperprolactinemia , Kisspeptinas , Femenino , Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina/farmacología , Humanos , Hiperprolactinemia/tratamiento farmacológico , Kisspeptinas/farmacología , Hormona Luteinizante
14.
Psychol Sci ; 33(3): 343-353, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35191784

RESUMEN

The contributions of gonadal hormones to the development of human behavioral sex differences are subjects of intense scientific and social interest. Isolated gonadotropin-releasing-hormone deficiency (IGD) is a rare endocrine disorder that can reveal a possible role of early gonadal hormones. IGD is characterized by low or absent gonadal hormone production after the first trimester of gestation, but external genitalia and hence gender of rearing are concordant with chromosomal and gonadal sex. We investigated recalled childhood gender nonconformity in men (n = 65) and women (n = 32) with IGD and typically developing men (n = 463) and women (n = 1,207). Men with IGD showed elevated childhood gender nonconformity, particularly if they also reported undescended testes at birth, a marker of low perinatal androgens. Women with IGD did not differ from typically developing women. These results indicate that early androgen exposure after the first trimester contributes to male-typical gender-role behaviors in childhood.


Asunto(s)
Andrógenos , Identidad de Género , Femenino , Humanos , Recién Nacido , Masculino , Recuerdo Mental
15.
Psychoneuroendocrinology ; 134: 105431, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34601343

RESUMEN

Ovarian estrogens may influence the development of the human brain and behavior, but there are few opportunities to test this possibility. Isolated GnRH deficiency (IGD) is a rare endocrine disorder that could provide evidence for the role of estrogens in organizing sexually differentiated phenotypes: Unlike typical development, development in individuals with IGD is characterized by low or absent gonadal hormone production after the first trimester of gestation. Because external genitalia develop in the first trimester, external appearance is nevertheless concordant with gonadal sex in people with IGD. We therefore investigated the effects of gonadal hormones on sexual orientation by comparing participants with IGD (n = 97) to controls (n = 1670). Women with IGD reported lower male-attraction compared with typically developing women. In contrast, no consistent sexuality differences between IGD and typically developing men were evident. Ovarian hormones after the first trimester appear to influence female-typical dimensions of sexual orientation.

16.
Handb Clin Neurol ; 182: 307-315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34266601

RESUMEN

Idiopathic hypogonadotropic hypogonadism and Kallmann syndrome are rare genetic disorders characterized by isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) and delayed or absent puberty. Defective GnRH neuron migration during development or secretion of mature GnRH neurons secondary to molecular defects in several key developmental and neuroendocrine pathways are thought to be the primary causes of these disorders. Recent studies have highlighted the importance of semaphorins and their receptors in this system, by showing that these molecules play distinct roles during the development and plasticity of these neurons. Accordingly, mutations in the semaphoring-signaling pathway genes have been found in patients affected by IGD, underlying the importance of semaphorin-mediated signaling pathways in the neuroendocrine axis that control reproduction.


Asunto(s)
Síndrome de Kallmann , Semaforinas , Hormona Liberadora de Gonadotropina/genética , Humanos , Hipogonadismo , Síndrome de Kallmann/genética , Neuronas , Semaforinas/genética , Transducción de Señal
17.
Genet Med ; 23(4): 629-636, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33442024

RESUMEN

PURPOSE: SOX10 variants previously implicated in Waardenburg syndrome (WS) have now been linked to Kallmann syndrome (KS), the anosmic form of idiopathic hypogonadotropic hypogonadism (IHH). We investigated whether SOX10-associated WS and IHH represent elements of a phenotypic continuum within a unifying disorder or if they represent phenotypically distinct allelic disorders. METHODS: Exome sequencing from 1,309 IHH subjects (KS: 632; normosmic idiopathic hypogonadotropic hypogonadism [nIIHH]: 677) were reviewed for SOX10 rare sequence variants (RSVs). The genotypic and phenotypic spectrum of SOX10-related IHH (this study and literature) and SOX10-related WS cases (literature) were reviewed and compared with SOX10-RSV spectrum in gnomAD population. RESULTS: Thirty-seven SOX10-associated IHH cases were identified as follows: current study: 16 KS; 4 nIHH; literature: 16 KS; 1 nIHH. Twenty-three IHH cases (62%; all KS), had ≥1 known WS-associated feature(s). Moreover, five previously reported SOX10-associated WS cases showed IHH-related features. Four SOX10 missense RSVs showed allelic overlap between IHH-ascertained and WS-ascertained cases. The SOX10-HMG domain showed an enrichment of RSVs in disease states versus gnomAD. CONCLUSION: SOX10 variants contribute to both anosmic (KS) and normosmic (nIHH) forms of IHH. IHH and WS represent SOX10-associated developmental defects that lie along a unifying phenotypic continuum. The SOX10-HMG domain is critical for the pathogenesis of SOX10-related human disorders.


Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Factores de Transcripción SOXE/genética , Síndrome de Waardenburg , Genotipo , Humanos , Hipogonadismo/genética , Mutación , Síndrome de Waardenburg/genética
18.
J Genet Couns ; 30(2): 598-605, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33098367

RESUMEN

Patients often have difficulty understanding genetic test reports. Technical language and jargon can impede comprehension and limit patients using results to act on findings. One potential way to improve patient understanding of genetic test reports is to provide patient-facing materials. This study aimed to examine understandability and actionability of co-created patient-facing materials for genetic test results in a research context. We combined interprofessional perspectives and patient engagement to co-create patient-facing materials for patients undergoing research genetic testing for congenital hypogonadotropic hypogonadism (Kallmann syndrome). The iterative development process was guided by principles of health literacy and human-centered design (i.e., design thinking). Readability was assessed using eight validated algorithms. Patients and parents evaluated materials using a web-based survey. The gold standard Patient Education Materials Assessment Tool for print materials (PEMAT-P) was employed to measure understandability (content, style, use of numbers, organization, design, use of visual aids) and actionability. PEMAT-P scores >80% were considered high quality. Results were analyzed descriptively and correlations performed to identify relationships between education/health literacy and PEMAT-P ratings. A consensus score of eight algorithms indicated the materials were an 8th -9th grade reading level. Our findings are consistent with the U.S. Department of Health and Human Services 'average difficulty' classification (i.e., 7th-9th grade). In total, 61 patients/parents evaluated the materials. 'Visual Aids' received the lowest mean PEMAT-P rating (89%). All other parameters scored 90%-97%. PEMAT-P scores did not differ according to educational attainment (less than college vs. college or more, p = 0.28). Participants with adequate health literacy were more likely to approve of the 'organization' of information (p < 0.05). Respondents with low health literacy had more favorable views of 'visual aids' (p < 0.01). Involving patients in a co-creation process can produce high-quality patient-facing materials that are easier to understand.


Asunto(s)
Alfabetización en Salud , Materiales de Enseñanza , Comprensión , Pruebas Genéticas , Educación en Salud , Humanos , Internet
19.
Cell Metab ; 33(1): 6-8, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264644

RESUMEN

Childhood obesity has been linked to early puberty in girls but the mechanism(s) by which overnutrition triggers pubertal onset remain unclear. In a recent issue of Cell Metabolism, Heras et al., 2020 implicate a non-canonical central ceramide to ovarian sympathetic innervation pathway as a novel mediator of obesity-induced pubertal acceleration in female rats.


Asunto(s)
Pubertad Precoz , Animales , Ceramidas , Femenino , Hipotálamo , Obesidad , Pubertad , Ratas
20.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32620954

RESUMEN

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hormona Liberadora de Gonadotropina/genética , Síndrome de Kallmann/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/genética , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Genes Dominantes/genética , Hormona Liberadora de Gonadotropina/deficiencia , Haploinsuficiencia/genética , Humanos , Síndrome de Kallmann/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...